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Abstract

The vibration of a rectangular plate under self-weight (or acceleration) is studied. The vertical edges are simply supported

and a semi-analytic Levy-integration method is used. The fundamental frequencies are determined for various top and

bottom boundary conditions. It is found that self-weight has considerable effect on both the frequency and the mode shape.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The study of the vibration of a standing plate under its own weight is important for the design of walls,
panels, and windows of buildings. Also, accelerating mobile structures could generate body forces equivalent
to gravity. There exist some reports on the buckling of standing plates [1–4] but there seems to be only
one reference on the vibration of standing plates. Herrmann [5] used an energy method and considered the
vibration of a standing rectangular plate simply supported on all sides, but only one term was used for the
frequency results.

The present paper studies the vibration of a standing plate simply supported on the two vertical sides. Four
kinds of practical boundary conditions will be considered. The bottom edge, bearing the total weight, is
clamped or simply supported, and the top edge, bearing no load, is either free or simply supported.

Since the two vertical edges are simply supported, the Levy method would reduce the plate equations to a
linear ordinary differential equation with non-constant coefficients. We shall use an integration method
similar to that of Barasch and Chen [6] which is easier than the Ritz method.

2. Formulation

Normalize all lengths by the plate height L. Fig. 1(a) shows the standing plate with Cartesian axes at the
lower left corner. Due to gravity, the body force per length in the vertical direction is �rgLð1� yÞ where r is
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Fig. 1. (a) The standing plate with coordinate axes and normalized dimensions. (b) Relative amplitude for the square C–F (clamped

bottom-free top) plate. g ¼ 100; k ¼ 1:3877. (c–e) 3D modes at Ot ¼ p=2; 0;�p=2, respectively.
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the mass per area and g is the gravitational acceleration. Then the governing equation is [7]

r4wþ g
q
qy
ð1� yÞ

qw

qy

� �
� k4w ¼ 0 (1)

Here w is the lateral deflection, the weight parameter g and the frequency parameter k are defined as

g ¼
rgL3

D
; k4

¼
rO2L4

D
(2)

where D is the flexural rigidity and O is the frequency. Since the vertical sides are simply supported, set

wðx; yÞ ¼ sinðaxÞY ðyÞ (3)

where a ¼ np=a. Eq. (1) becomes

Y 0000 � 2a2Y 00 þ a4Y þ g½ð1� yÞY 0�0 � k4Y ¼ 0 (4)

For given a, g and the bottom, top boundary conditions, the lowest eigenvalue k, or the square root of
normalized frequency, is sought.
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If the bottom is clamped and the top is free, the boundary conditions are

Y ð0Þ ¼ 0; Y 0ð0Þ ¼ 0 (5)

Y 00ð1Þ � a2nY ð1Þ ¼ 0; Y 000ð1Þ � a2ð2� nÞY 0ð1Þ ¼ 0 (6)

Here Eq. (6) represents zero moment and zero shear and n is the Poisson ratio. The two point boundary value
problem is very difficult to solve, even numerically. We shall turn it into two initial value problems. Let Y1

satisfy Eq. (4) and the initial conditions

Y 1ð0Þ ¼ 0; Y 01ð0Þ ¼ 0; Y 001ð0Þ ¼ 1; Y 0001 ð0Þ ¼ 0 (7)

and Y2 satisfy Eq. (4) and the initial conditions

Y 2ð0Þ ¼ 0; Y 02ð0Þ ¼ 0; Y 002ð0Þ ¼ 0; Y 0002 ð0Þ ¼ 1 (8)

Then the solution to Eqs. (4) and (5) can be expressed as a linear combination of the two independent
solutions Y1 and Y2

Y ¼ C1Y 1 þ C2Y 2 (9)

Substitution of Eq. (9) into Eq. (6) gives two linear homogeneous algebraic equations

Y 001ð1Þ � a2nY 1ð1Þ Y 002ð1Þ � a2nY 2ð1Þ

Y 0001 ð1Þ � a2ð2� nÞY 01ð1Þ Y 0002 ð1Þ � a2ð2� nÞY 02ð1Þ

 !
C1

C2

 !
¼ 0 (10)

For non-trivial C1 and C2, the determinant of coefficients is set to zero, which yields a nonlinear equation in k.
Using bisection, the lowest k (giving the fundamental frequency) is thus obtained. Since the amplitude of the
eigenfunctions is indeterminate, we can set C1 ¼ 1 and solve for C2 from one of the equations in Eq. (10). Then
Eqs. (3) and (9) give the mode shapes.

In all cases we find n ¼ 1 gives the fundamental frequency. We used n ¼ 0.3 for Poisson ratio and a standard
Runge–Kutta algorithm for the solutions Y1 and Y2. The relative error is set at 10�6.

For the case where the bottom is clamped and the top is simply supported, Eq. (6) is replaced by

Y ð1Þ ¼ 0; Y 00ð1Þ ¼ 0 (11)

If the bottom is simply supported, Eqs. (7) and (8) are replaced by

Y 1ð0Þ ¼ 0; Y 01ð0Þ ¼ 1; Y 001ð0Þ ¼ 0; Y 0001 ð0Þ ¼ 0 (12)

Y 1ð0Þ ¼ 0; Y 01ð0Þ ¼ 0; Y 001ð0Þ ¼ 0; Y 0001 ð0Þ ¼ 1 (13)

The eigenvalue is obtained from the top condition, Eq. (6) if it is free or Eq. (11) if it is simply supported.
The mode shapes are found similarly.

3. Results and discussions

Let the first letter denote the bottom boundary condition and the second letter denote the top boundary
condition. Thus C–S means bottom clamped and top simply supported and S–F means the bottom is simply
supported and the top is free.

When the frequency is zero (k ¼ 0) our method gives the buckling load. Table 1 shows the results for C–F,
S–F, C–S and S–S cases. Notice that our results for C–F and S–F cases are in complete agreement with those
of Ref. [4] who used a Ritz method. On the other hand, the one term solution of Herrmann [5] for the S–S case
and the empirical formulas of Kato [9] for the column are too inaccurate to be useful.

Typical mode shapes for the vibration of a square C–F plate are shown in Fig. 1(b–e). For narrower and
heavier plates, the largest amplitude may occur near the bottom, as shown in Fig. 2 for the S–S plate. If weight
were absent, the vibration of an S–S plate would be symmetric about the mid point. Multiple cells in the
vertical direction also occur for heavier and narrower plates.

The frequency parameters k for C–F plate are given in Table 2. Here g ¼ 0 indicates the self-weight is
absent, and the frequencies have been reported by many authors [7]. In the Appendix A we briefly present the
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Table 1

The buckling load for various widths a.

a C–F S–F C–S S–S

0.2 1414.6* 1162.5* 1414.6 1162.5

0.5 306.09* 213.72* 307.83 214.02

1 102.22* 62.701* 111.96 63.783 (26.32)

5 9.4528* 1.2010* 54.380 19.995 (16.48)

10 8.2246* 0.28234* 52.966 18.921 (18.67)

1000 7.8374* 0.00003* 52.501 18.569 (19.74)

N 7.83735� [7.85] 0 52.5006 [60.34] 18.5687 [26.57]

The small dot is from the exact solution [8]. The asterisked values are identical with [4], the values in parenthesis are from [5] and the values

in brackets are from [9].

Fig. 2. (a) Relative amplitude for the S–S (simply supported all sides) plate. a ¼ 0.25, g ¼ 500; k ¼ 12:322. Note interior nodal line. (b–d)

3D modes at Ot ¼ p=2; 0;�p=2, respectively.
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exact solution. When a is small, the frequency becomes independent of self-weight, and approaches infinity as
a-0. When a is large, or very wide width, the frequency becomes independent of the aspect ratio, and
decreases to some constant value depending on g, provided go7.8384. If g47.8384 the frequency decreases as
width a increases, until k reaches zero, whereby the plate buckles due to self-weight.



ARTICLE IN PRESS

Table 2

Frequency parameter k for the C–F case.

a g

0 7 10 20 100 300 1000

0.2 15.740 15.739 15.739 15.738 15.729 15.710 15.169

0.5 6.458 6.448 6.443 6.429 6.306 3.458 0

1 3.562 3.501 3.474 3.378 1.388 0 0

2 2.388 2.158 2.031 1.092 0 0 0

5 1.964 1.403 0 0 0 0 0

10 1.897 1.180 0 0 0 0 0

20 1.881 1.103 0 0 0 0 0

1000 1.875 1.078 0 0 0 0 0

N 1.875 1.073 0 0 0 0 0

The zero entry means the plate has already buckled.

Table 3

Frequency parameter k for the S–F case.

a g

0 1 2 10 50 200 500

0.2 15.735 15.734 15.734 15.734 15.730 15.714 15.681

0.5 6.419 6.417 6.416 6.404 6.341 4.491 0

1 3.418 3.409 3.399 3.316 2.623 0 0

2 2.008 1.960 1.907 0.958 0 0 0

5 1.160 0.742 0 0 0 0 0

10 0.8069 0 0 0 0 0 0

20 0.5682 0 0 0 0 0 0

1000 0.0802 0 0 0 0 0 0

N 0 0 0 0 0 0 0

The zero entry means the plate has already buckled.
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The frequency for the S–F case is given in Table 3. In this case there is no constant asymptote for any g as
a-N. The plate always buckles. Again the results for g ¼ 0 can be obtained from the Appendix A.

The frequency for the C–S case is given in Table 4. Here the g ¼ 0 column is exact, and the plate does not
buckle if go52.501.

The frequency for the S–S case is given in Table 5. The plate would not buckle for large a if go18.569.
We find the fundamental frequency becomes independent of the top and bottom edge conditions when the

plate is very narrow. Our exact solution equation (A.6) for the S–S plate show that the frequency (in all cases)
becomes infinite algebraically, i.e.

k�p=a as a! 0 (14)

For fixed width as the weight (or acceleration) increases, the frequency decreases until k ¼ 0, when the plate
buckles statically. On the other hand, for fixed weight and increased width, the frequency decreases and
reaches zero (buckle) for the S–S case, but the plate buckles only for larger self-weight in the other three cases.

The semi-analytical method used in this paper would also determine the higher frequencies. We note that if
the vertical edges are not simply supported, the Ritz method is recommended instead of numerical integration
such as finite elements.
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Table 4

Frequency parameter k for the C–S case.

a g

0 10 50 100 300 1000

0.2 16.048 16.045 16.045 16.014 15.956 15.169

0.5 7.189 7.158 7.027 6.839 3.734 0

1 4.863 4.764 4.265 2.901 0 0

2 4.163 4.004 2.933 0 0 0

5 3.964 3.778 2.145 0 0 0

10 3.936 3.745 1.944 0 0 0

20 3.929 3.737 1.884 0 0 0

1000 3.927 3.734 1.863 0 0 0

N 3.927 3.734 1.863 0 0 0

The zero entry means the plate has already buckled.

Table 5

Frequency parameter k for the S–S case.

a g

0 18 25 50 200 500

0.2 16.019 16.014 16.012 16.004 15.955 15.825

0.5 7.025 6.959 6.931 6.827 4.523 0

1 4.443 4.152 4.011 3.196 0 0

2 3.512 2.766 2.092 0 0 0

5 3.204 1.831 0 0 0 0

10 3.157 1.508 0 0 0 0

20 3.146 1.386 0 0 0 0

1000 3.142 1.337 0 0 0 0

N p 1.337 0 0 0 0

The zero entry means the plate has already buckled.
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Appendix A. Exact solutions when c ¼ 0

When weight is absent Eq. (4) becomes an ordinary differential equation with constant coefficients

Y 000 � 2a2Y 00 þ a4Y � k4Y ¼ 0 (A.1)

The solution is a linear combination of

fsinhð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ k2

p
yÞ; coshð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ k2

p
yÞ; sinhð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
yÞ; coshð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
yÞg if koa (A.2)

fsinhð
ffiffiffiffiffi
2a
p

yÞ; coshð
ffiffiffiffiffi
2a
p

yÞ; y; 1g if k ¼ a (A.3)

fsinhð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ k2

p
yÞ; coshð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ k2

p
yÞ; sinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� a2

p
yÞ; cosð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� a2

p
yÞg if k4a (A.4)

But for the fundamental frequency, we find k4a is always true. Thus the form of Eq. (A.4) is used.

Let l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ k2

p
; m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� a2

p
.

If the bottom is simply supported, the general solution satisfying Y ð0Þ ¼ 0; Y 00ð0Þ ¼ 0 is

Y ¼ A sinhðlyÞ þ B sinðmyÞ (A.5)
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For the S–S case, we substitute Eq. (A.5) into Eq. (11) and find A ¼ 0 and sin m ¼ 0. This yields m ¼ mp where
m is an integer. Thus the frequency parameter is k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þm2p2
p

and the fundamental frequency is

k ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=a2

q
(A.6)

For the S–F case, Eq. (6) gives the characteristic equation

mðl2 � a2nÞ½m2 þ a2ð2� nÞ� sinh l cos m� lðm2 þ a2nÞðl2 � a2ð2� nÞ� cosh l sin m ¼ 0 (A.7)

Here the eigenvalue k can be obtained by bisection.
If the bottom is clamped, the general solution satisfying Eq. (5) is

Y ¼ A½m sinhðlyÞ � l sinðmyÞ� þ B½coshðlyÞ � cosðmyÞ� (A.8)

For the C–S case substitute Eq. (A.8) into Eq. (11) and the characteristic equation is

ðm sinh l� l sin mÞðl2 cosh lþ m2 cos mÞ � mlðcosh l� cos mÞðl sinh lþ m sin mÞ ¼ 0 (A.9)

The C–F case is a bit more involved. Eqs. (A.8), (6) yield

½mlðl sinh lþ m sin mÞ � a2nðm sinh l� l sin mÞ�½l3 sinh l� m3 sin m� a2ð2� nÞðl sinh lþ m sin mÞ�

� ½l2 cosh lþ m2 cos m� a2nðcosh l� cos mÞ�ml½l2 cosh lþ m2 cos m� a2ð2� nÞðcosh l� cos mÞ� ¼ 0

(A.10)

Eqs. (A.6), (A.7), (A.9) and (A.10) are used in the determination of the frequency parameter when g ¼ 0.
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